If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+50x-336=0
a = 2; b = 50; c = -336;
Δ = b2-4ac
Δ = 502-4·2·(-336)
Δ = 5188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5188}=\sqrt{4*1297}=\sqrt{4}*\sqrt{1297}=2\sqrt{1297}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-2\sqrt{1297}}{2*2}=\frac{-50-2\sqrt{1297}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+2\sqrt{1297}}{2*2}=\frac{-50+2\sqrt{1297}}{4} $
| 7h+5h+1=15 | | 9(k-2)=5(k+2) | | -4(-x+9)+5=3(-9-1)-2 | | 2(x+19)^⅖-1=17 | | 4(t-6)=3(t-1) | | j+30+j+30/3+j+30/3-15=175 | | 44=2x-2(-5x+20) | | 9(e-2)=8(e-1) | | 2x+4(x+3)=84 | | 6a–9=9 | | 2x+3×x=72 | | (5x-4)(3x+7)=0 | | 7x+7=86 | | j+30+j+30/3-15+j+30/3=175 | | 30=x^2+14x | | 1=4x=13=x | | 6c+14=14+4c | | b—7=12 | | 7x-9.2=5x-6 | | x-8.1=-5.4 | | (x)=3x+11 | | 2y+8=5y-7 | | x2−8x+15=0 | | 17-2p=4p+5= | | 3j+90+3j+90-450+3j+90=5250 | | 4(x)+(x+40)+(2x)=565 | | –6y2–9y=–1 | | 0.5x+2x-23=27 | | 2(4-x)+6=-10 | | 2/3q=4 | | 6=2a+0.5 | | 3^(x-5)=9^(3x) |